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Abstract
Calorie restriction (CR) and ketogenic diet (KD) are the dietary regimens that
decreases calorie intake without suffering through malnutrition period. CR
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ketone bodies, cancer, epilepsy seems to play an essential role in extending life span and involved in the
treatment of various age-related diseases. CR is also concerned with the

Article History decrease in adiposity. KD is a low protein, low carbohydrate and high fat
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diet, appeared as very efficient in the treatment of cancer and glioblastoma
multiforme tumor cells. KD was developed in 1921 but now it has been
thought to be the most effective anti-cancer therapy and it is also being used
as an effective agent for epilepsy patients. Ketone bodies are widely used now-
a-days to reverse the adverse effects of radiations and chemotherapy too. This
review summarizes the complete history of CR and KD as well as their
efficacy role in the treatment of various diseases with respective case studies.
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INTRODUCTION

It has been long recognized, aging is the ultimate
risk factor for a wider range of diseases such as
cancer, neurodegenerative diseases, nephropathy,
multiple diseases,
disease as well as type 2 diabetes [1] and calorie
restriction (CR) administration helps to extend the
life-span and delays the inception of these age-
related diseases [2-4]. Calorie Restriction is a
prolong reduction of nutritional energy intake with
an approximate estimation of 30% devoid of
incurrence of malnutrition, markedly decreases the
inflammation with the increase in the metabolic
rates in non-obese rodents and humans [4-7]. CR is
a nutritional mediation that delays and extends
aging that is familiar with deleterious changes in
tissues and cells with time and extends health
period in varies kind of species [2, 8-10]. CR is
involved in the great reduction of adiposity; as a
consequence it may be of well repute in the
mechanism of CR that gives the endocrine function

autoimmune cardiovascular

of adipose tissues. Secretions from white adipose
(lipokines & adipokines) effect fuel
utilization of peripheral tissues as well as the
balancing of energy generation through
carbohydrate or lipid sources [11-13]. Yet, it is
undiscovered that, how aging has been affecting
metabolic integrity of adipose tissues in addition to
how it relates to the secretions of systemic
monitoring factors. It is evident that from research
on rat specie, CR persuades gene expression
involved in various aspects of metabolism. A further
difference involves, long term severe (40%) CR
increases the circulating levels of peptide hormone
adiponectin (an adipose tissue-derived hormone)
[14, 15], where Adiponectin is concerned with great
insulin resistivity and it circulates and activates lipid
metabolism in responding tissues [16]. Recently a
huge research has been conducted on CR, and its
impact on age-related pathologies in rodent models
was studied, clinical data taken from unsystematic
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clinical trials and human observations demonstrate
that molecular and metabolic changes due to CR in
non-obese human were quite similar observed in
rodents [17]. Prior studies on Rhesus Monkeys at
University of Wisconsin (UOW) & National
Institute of Ageing (NIOA) displayed that CR diet
is involved in the reduction of tumor rate by 75.5%
increases life-span and is more effective than a
control diet [18, 19].
As a result of rise in obesity level in modern
countries the rise in the occurrence of
cardiovascular diseases (CVD) was also seen [20].
CVD is the prominent reason for mortality and
illness in Western-Countries [21] and by the end
of 2020, 40% of all deceases may occur due to
CVD [22]. The effects of CVD are exclusively
seen in older inhabitants, resulting in increased
levels of mortality and disability [23]. Various
risk factors of CVD have been recognized
including - hypertension, smoking, dyslipidemia,
impaired insulin sensitivity, abdominal obesity
and sedentary lifestyle [24]. Obesity is also
considered to be an eminent hazard for diabetes
(Type-2) and insulin resistance [25]. This kind of
insulin resistivity is concerned with lipids
accumulation, noticeably in skeletal and liver
muscles, and may lead to the progress of Non-

Alcoholic Fatty Liver Disease (NAFLD) which
acts as an autonomous predictor of CVD and
present in nearly 90% of obese people [26-28].
According to previous data diet full of
carbohydrates, especially rich in fructose and
refined sugars are concerned with various
metabolic syndromes [29, 30]. Thus, multiple
diet plans have been proposed but through all of
them carbohydrate restriction diet is of utmost
importance due to its involvement in the
reduction of all the features of metabolic
syndromes [31-33]. Later on with the arrival of
Atkin’s book in start 1970s [34], carbohydrate
restricted diets have come to be very popular,
specifically Ketogenic diets (KD). KD is
associated with lesser in carbohydrates, rich in
fats and adequate proteins. There are various
types of KD that are given below in Table-3 [35-
37]. Generally, KD is recognized with a decrease
in carbohydrates (average-less than 50 grams per
day) and comparatively high in the levels of fats
and proteins [38].

Some distinctions may exist alike very low-
carbohydrate KD, which is more restricting and
less than 30 grams per day (Table-1).

Table 1: Standard conformation of KD in adults (planned for a 2,000 kilo calories diet per day). KD,

Ketogenic Diet.

Classical KD Defined as <130 g carbohydrate per day or <26% of
caloric intake by the American Diabetes Association
Modified Atkins Diet 65% caloric intake from fat, 30% protein, 6%
carbohydrates
Very low-carbohydrate KD Carbohydrates < 30 g/day

After some days of feeding by such a restricted
carb diet, carbohydrates reserves (Glycogen
deposited in skeletal and liver muscles) becomes
unable to meet the energy requirements, leading
to the production of ketone-bodies in liver,
which is used by the central nervous system
(CNS) as a substitute energy source to the body
[39]. Beside these KD seems to be very operative
in seizures treatment (40, 41].

Calorie restriction and cancer
According to recent researches, in exposure to
energy-restricted nutritional diet consequences

in less glucose reserves and growth factor, IGF-1
[4, 42, 43]. Clinical studies in pancreatic, colon
and breast cancer have showed that IGF-1
signaling induces a foremost role in anti-cancer
CR’s effect [42, 44, 45].

Forty-four former studies have disclosed that
anti-tumor effects are greatly engaged with CR in
animal models (Table-2) [42, 43, 46-387].
Amongst them, most of the researchers used
murine models (43 studies) while one of them
used hamster model in his study. The most
studied types of cancer were prostate, pancreatic,
mammary, hepatic and brain cancers. Ovarian,
colonic, intestinal and skin cancers were also
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examined in some of the related studies (1 or 2
studies). Chemical induced models,
transplanted models, transgenic models and
spontaneous models were applied and 90.9%
studies reinforced positive CR’s anticancer role
even with diverse measurements. CR role on
cancer initiation has been studied in thirty
studies and its defensive role in cancer initiation
was investigated in twenty six studies. Three
studies demonstrated the CR role in metastasis

on cancer and fourteen of them revealed CR’s
effect on progression. Tumor incidence in
percentage, tumor weight, tumor growth
measurements were applied frequently. From
these forty-four studies CR is concerned with
less weight as compared to control. Six out of
these fortyfour studies indicated that
intermittent caloric restriction (ICR) was more
effective than chronic caloric restriction (CCR)
as tumor inhibitor [18]

Author | Mod | Tumor Feeding Sample | Time | Body weights(g) | Major Results C S
(Year) el Regimens | size 2 b d
Engelma | Mice | Mammary, | AL;CR® 60;24;60 | 60 42.3;41.4;27.8 Tumor incidence(%): | + I
n TG (4-12w"); 83; 50; 13
1994 CR(conti

nuously)
Tagliafer | Rats | Mammary, | AL; Cyclic | 47;49 16 Cyclic CR<AL Tumor incidence(%): I
ro C CR(1w 54;66
1996 33%

restriction

3w

refeeding)
Gillette | Rats | Mammary, | AL; 30,30 20.5 | CR<AL Tumor incidence(%): | + I
1997 C 20%CR 23.3; 6.7
Pape- Mice | Mammary, | AL; 32,31;33 | 80 34.9;31.1;28.0 | Tumor incidence(%): | + I
Ansorge TG ICRI(3 37.5;22.5; 33
2002 weeks

50%

CR 3

weeks

AL);CCR

K
Thomps | Rats | Mammary, | 40% 54,24 11 162,207 Tumor incidence(%): | + I
on 2004 C CR;AL 59;96
Zhu2005 | Rats | Mammary, | 40%CR; | 30;20;29 | 7 139;160;191 Tumor incidence(%): | + I

C 6 week 56.7;80;96.6

40%CR 8

day

refeeding;

AL
Cleary20 | Mice | Mammary, | ICR(3 39;30;31 | 80 25/32.5426.2; Tumor incidence(%): | + I
07 TG weeks 31.2 15;27;84

50% CR
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3 weeks

AL);CCR;

AL
Jiang Rats | Mammary, | 20% CR; | 30;30;30 | >7 150;123;180 Tumor I
2008 C 40% incidence(%):60;23;96

CR;AL
Dogan Mice | Mammary, | ICR(3 52;40;44 | 64 22.6/26.7;25.1;,3 | Tumor incidence(%): I
2009 TG weeks 6 11.5;20; 45.5

50% CR

3 weeks

AL);

CCR;AL
Phoenix | Mice | Mammary, | 30%CR; | /° >27 / Tumor volume: P
2010 TP™ AL CR<AL; Metastases: ,

CR<AL M

De Mice | Mammary, | 40%CR; | 7;7 9 16.6; 21.6 Wet tumor weight: 1.5; P
Lorenzo TP Normal 3,5 g  Metastases: ,
2011 diet CR<AL M
Nogueira | Mice | Mammary, | 30% CR; | 15;15 18 29;40 Tumor weight: P
2012 TP control 0.04;0.39 ¢

diet
Dunlap Mice | Mammary, | 30%CR; 20;20 >47 / Tumor area: CR<AL P
2012 TP AL
Saleh201 | Mice | Mammary, | ADF(alter | 80(total) | 6 CR<AL Tumor growth delay of P
3 TP nate day ADF and CR

feeing);

30% CR;

AL
Mizuno | Mice | Mammary, | CCR; 36;29;30 | >50 CR<AL Tumor incidence(%): I
2013 TG ICR(3 47, 59; 87

weeks

50% CR

3 weeks

AL); AL
Rogozina | Mice | Mammary, | ICR(3 45:45:45 | 82 CR<AL Tumor incidence(%): I
2013 TG weeks 4.4;,52.3,66.7

50% CR

3 weeks

AL);

CCR; AL
Boileau Rats | Prostate, C | AL; 194 total | >60 CR<AL Prostate cancer-free I
2003 20%CR survival: CR<AL
SUTTIE | Mice | Prostate, Late-onset | 109 total | 39 CR<AL (sex- | CR retard epithelial P
2005 TG 20% CR?; pluck) lesion development

AL

http://fmhr.org

| Naeem et al., 2025 |

Page 790




Frontier n

Medical & Health
Research

Volume 3, Issue 8, 2025
ISSN: (e) 3007-1607 (p) 3007-1593

Kandori | Rats | Prostate, 30%CR; 10; 10 91 389.3;475.2 Deceased epithelial | + [ 4 |1
2005 TG control areas/whole area in CR
McCorm | Rats | Prostate, C | 30%CR; | 43;42;43 | 48 CR<AL Tumor - 14 1
ick2007 15%CR; incidence(%):72;64;74

AL
Bonorde | Mice | Prostate, ICR(2 101;79;4 | 50 27.43/30.89%29. | Median time to tumor | + |4 |1
n2009 TG weeeks 1 16;33.48 detection (week):

50% CR 38;35;33

2 weeks

AL);CCR;

AL
Blando Mice | Prostate, 30%CR;o0 | 27;23;23 | 24 23.9;,40.1;44.9 Tumor + 14 |1
2011 TG verweight incidence(%):37;100;1

control; 00

diet

induced

obesity
Galet Mice | Prostate, 40% CR; | 16516 >3 CR<AL Tumor weight:295; | + |4 | P
2013 TP AL 467mg
Seyfried | Mice | Brain, TP | AL; 7;6 >2 CR<AL Tumor dry weight: |+ |3 | P
2003 40%CR CR<AL
Shelton | Mice | Brain, TP | 60% CR; | 9-10;9-10 | >2 CR<AL CR reduced the growth | + |4 | P
2010 AL and invasion of tumor ,

M
Mulroon | Mice | Brain, TP | 30%CR; | 5;4 >14 CR<AL Tumor weight:: | + | 4 | P
ey 2011 AL CR<AL
Jiang Mice | Brain, TP | 40%CR; | 30;30 >14 CR<AL Tumor weight:: | + | 3 | P
2013 AL CR<AL
Birt 1997 | Ham | Pancreatic, | AL; 35;35;38 | 102 CR<AL Tumor incidence: | - |4 |1
ster C 10%CR; | ;33 14;9;13;18

20%CR;

40%CR
Lashinge | Mice | Pancreatic, | 30%CR; 9;9 11 CR<AL Tumor weight: | + |4 | P
r 2011 TP AL CR<AL
Lanza- Mice | Pancreatic, | ICR (1| 31531531 | 44 21.7;21;29.6 Incidence of PanIN-2 | + |5 |1
Jacoby TG week 50% or more lesions: 27;40;
2013 CR 1 70%

week AL);

CCR; AL
James Mice | Hepatic, S* | AL; 40% | 73;72 144 32.3;23.5 Tumor incidence(%): | + | 4 |1
1994 CR 27.4;4.2
Von Mice | Hepatic, C | AL; 40% | 46;42 84 CR<AL Tumor incidence(%): | + | 4 |1
Tungein, CR 41,0
1996
Van Mice | Hepatic, 30%CR(p | 5;5 24 CR<AL Hepatic tumor load: |+ |3 | P
Ginhove TP reoperativ reduced by CR
n 2010 e);i- AL
Stewart Mice | Skin, C 40%CR; | 32;30 >31 CR<AL Papilloma incidence: | + |3 |1
2005 AL CR<AL
Moore Mice | Skin, C 30% CR; | 26;29;27 | >50 26.7;35.0;41.4;50 | Tumor incidence(%): | + |4 |1
2012 15% CR; | ;25 57.7;69;92.3;96
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10 kcal%

fat; 60

kcal% fat
Tomita Rats | Colonic, C | 40% CR; | 23;23 5 CR<AL Number of aberrant |+ |4 |1
2012 AL crypt foci: CR<AL
Harvey Mice | Colonic, 30%CR; | 30;30 >24 CR<AL Tumo + 14 |1
2012 TP AL rvolume: CR<AL
Carver Bird | Ovarian, S | 555CR; 394;393 | 2year | 1423;1896 Tumor incidence(%): | + | 4 |1
2011 Full-fed 10.3;33.3
Mai Mice | Intestinal, | AL;40%C | 30;28 9 CR<AL Polyp numbers: | + |3 |1
2003 TG R CR<AL
Dunn Mice | /, TG+ C | AL; 10;10 22 38;30 Tumor + |3 |1
1997 20%CR incidence(%):40; 20
Hursting | Mice |/, S AL(P53- 28- 132 | CR<AL CR delayed tumor |+ |4 |1
, 1997 );40%CR( | 30/grou mortality relative to AL

p53-); P

AL(p53+);

40%CR(p

53+)
Berrigan | Mice |/, TG AL; 31- >48 CR<Fast<AL Tumor free survival: |+ |4 |1
2002 40%CR; 32/grou CR>AL; Fast>AL

1 day/|p

week fast
Tsao Mice | /, TG Control; 34,46;16 | / CR< Control Intestinal tumor 3|1
2002 High incidence(%): 69; 65;

fat/low 69

calciumy

30% CR
Yamaza Mice |/, TG 30%CR; 18;17 >144 | CR<AL Tumor incidence(%): | + |3 |1
2010 AL 16.7;94.1

Abbreviations: ‘Time: Time of study (weeks); "C: Conclusion of the study, “+” indicates a positive conclusion and *“-”
represents a negative conclusion; ‘Q: Quality of the study according to a critical checklist of the Stroke Therapy Academic
Industry Roundtable; 9S: The step(s) of cancer that dietary restriction regimens interfere during the initiation, progression
and metastasis of cancer, “I” indicates initiation, “P” indicates progression and ‘M’ indicates metastasis; “TG: transgenic;
fAL: Ad libitum; *CR: caloric restriction; "w: week; 'C: Chemical-induced; ICR: Intermittent caloric restriction; “\CCR: chronic
caloric restriction; '25/32.5: ICR mice sacrificed at the end of the 12th restriction period/ICR mice sacrificed at 1week after
12th refeeding; "TP: transplanted; "/: not specified; “Late-onset 20%CR: al libitum 20 weeks followed by 20% diet restriction;

P27.43/30.89: Mice euthanized during restriction/Mice euthanized during AL consumption; S: Spontaneous.

Table-2: CR diet experiments and cancer.
1.1 Caloric  restriction and
treatment

Pancreas produces and release peptide hormone
insulin in respond to hyperglycemia which is
associated with the progression of metabolic
hormones (adiponectin, leptin and IGF-1),
aberrant glucose metabolism, insulin resistance
and chronic inflammation [88]. Clinical study
proves that high levels of insulin and C-Peptide

cancer

(breakdown product of pro-insulin) are involved
in various types of cancer progression [88, 89].
Elevated insulin levels in circulation leads to the
hepatic production of IGF-1, which is acute for
the development and growth of many tissues as
well as a possible risk of progression of many
types of cancer [88, 90, 91]. CR induces a
decline in insulin and metabolic hormone (IGF-
1) levels in circulation and reduces the glucose
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levels as well [90]. Hyperglycemia enforces
insulin  production  and  results in
hyperinsulinemia which upregulate the GHR
(growth hormone receptor) signaling improves
IGF-1  production. While CR regimen
normalizes the glucose and insulin levels as
compared to control diet. Thus, this reduction
in glucose due to CR is considered to have anti-
cancer effects [7].

As it is evident from past and recent studies on
rat models that IGF-1 level in serum constantly
declined in proportion to the sternness of CR
regimen enforced [74, 77, 92-94] e.g. in rat
models CR regimen (25% less in calorie intake)
reduces serum IGF-1, results in less cell division
and prevents cell leukemia in rats [93]. An
overview of CR’s effect on cancer is given below
in figure-1.

Pprogression.

Vascular
¢Perturbations

doveyy

Overview of mechanism: CR and cancer: Chronic exposure with CR regimen minimizes the circulating
hormones level as well as the levels cytokines and growth factors, decline in growth factor signaling, rare
vascular perturbations with decreased soreness. These responses to CR results in declined risk of cancer and its

Arrow preceding transeript shows a directional effect 1.e. concentration or activity.

Abbreviations: IGF-1, insulin-like growth factor-1; ApN, adiponectin; PAI-1, plasminogen activator inhibitor—
1; tPA, tissue-type plasminogen activator; uPA. urokinase-type plasminogen activator; VEGF, vascular
endothelial growth factor; PI3K, phosphoinositide 3-kinase; mTOR, mammalian target of rapamycin; NF-kB,
nuclear factor kB; COX-2, cyclooxygenase-2.

Cancer Risk
and Progression

— B
QVEGD

2. Caloric restriction (CR) roles in skin

As we know caloric restriction (CR) is very
helpful in preventing many age-related diseases
and promotes life-time, improves health-span in
a multiple kind species without lacking vital
nutrients [95-97]. Most studies on laboratory
rodents have showed CR’s different metabolic
effects on heart, brain, liver, skeletal muscles and
on adipose tissues as well. It induces alteration
in oxidative phosphorylation, lipid and protein
storage and turnover [98].

Even though CR has been exclusively studied in
major organs but its metabolic or functional
effects on skin was highly neglected in the
preceding years. Studies of CR’s effect on skin
are of quite importance because of its largest size
and may also due to its major role as a barrier
contrary to dehydration, microbial insults,

Figure 1

mechanical trauma and heat loss [99, 100].
Thus, the skin and skin appendages i.e. hair
follicles (HF) are expected to be affected in
response to CR.

Thus to study CR’s effect on skin a research had
been conducted using mice with animals houses
within the archetypal laboratory conditions,
temperature markedly under thermo-neutrality
level [101, 102]. Under these specific conditions,
animals rested more on their respective
insulation capacity, therefore CR studies
showed that this dietetic intermediation was
effective in the remodeling of fur and skin [101].
A research had been conducted in which mice
was calorically restricted for 6 months, enough
timespan to investigate several of these
metabolic phenotypes concerned with this
restricted diet [103]. Consistent with later
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reports [104], mice was observed with the 54%
drop in body mass and was substantially smaller
than ad libitum (AL) nurtured counterparts. CR
animals were also seemed more even, long back
and thick (Figure-2).

To appraise the structure of fur coat, 4 kinds of
hair follicles were quantified in back skin named
as zigzag, awl, guard and auchenne. Awl hairs
were shorter and straighter than guard hairs;
contained 3 or 4 medulla cell rows [105, 106],
their numbers were remained unaltered in CR-
fed animals, and however they showed less
dispersion amongst CR individuals (Figure 2C).
Auchenne hairs were quite similar with awl
hairs; except for they had a kink in their hair
shaft [105] and were evenly distributed in CR
and AL groups (Figure 2D). The similar change
was seen in zigzag hairs (Figure 2E). The longest,
guard hairs, displayed not kinks and buds off in

morphogenesis at embryonic-day E13-E14.5
[107] regardless of its low frequency, these hairs
displayed highly raised density in CR-fed
animals (Figure 2-F;p<0.001). These hairs
reflects a substantial modification

*  Of percentage from 2%-4% (in AL animals)
to 6%-8% in CR-Aed animals (Figure 2-G;
p<0.001) and

* Increase in their hair lengths in CR-fed
animals (Figure 2-H; p<0.05).

Those variations were specific, and were only
seen in CR-fed animals and not in AL animals.
Consequently, it was proven that in CR-fed
animals that they displayed a remodeling in back
fur coated coverage. These hair shafts were
grown-up by HFSCs (Hair-follicle-stem-cells)
[108].

the course of the first wave of HEF,
C Awl D Auchenne E Zigzag
160 50 ns 100
2 = 2 ° 2
- o
E 140 o° ns E 40 o° 3 E 80 o ns
5 = g - 3 5 oo = r
2 r 5 2 -
2 oo - 2 20 - 2 40 o _azT
o - o = - = Co°
S 100 o & o -
= o = 10 = 20
£ £ £
Lo S » & ™ &
F Guard G Guard percent H Guard size
40 9 20
@ ek 8 -
o -
E - » 7 £ *
30 15
k=) 5
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S ™~ s - =
= o o - — 3 =
= s
2 10{ <Ss8o = 2 2 5
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3. Ketogenic diet and Epilepsy

After strokes, epilepsy is the most prominent
neurological  disorder [109] and affects
minimum 50 million individuals all over the
world [110]. Despite of a huge advancement in
management, diagnosis and anti-epileptic drugs
(AED) around 30% of children’s are facing
uncontrolled seizures and/or insufferable side
effects by using AED(s), besides taking restricted
chronic treatment options [111]. While, it is
probed from past and current data, that KD is
widely involved in epilepsy treatment. The
ketogenic diet (KD) is a diet consists of sufficient
proteins, low carbohydrates and high fat, with

effective non-pharmacological treatment for
children/adult suffering from refractory epilepsy
[112, 113]. Hippocrates established that fasting
reduced seizures [112, 114] while the KD’s use
for the first time was originally described by
Russell M. Wilder, in 1921 at Mayo clinic [112,
114]. Then, two French neurologists from the
preceding century investigated a decline in
seizures in those children/adults who had a four-
day fast [115]. Later on Wilder used this data in
the development of a diet that induced ketosis
as induced by fasting, by using an idea that a diet
will be replaced by fasting. However, the study
and use of KD was reappeared in the initial
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months of 1990s [114, 116]. For the past two
decades the importance of KD was gradually
increased and different controlled trials have
showed its efficacy in various pediatric seizures
population [114]. In general, a prominent
reduction (>50%) in seizures was observed in
those patients who were initiated with KD [112].
Moreover, patients who have used five or more
than five AEDs are subjected to KD [40, 117].
3.1 Ketogenic diet in the treatment of
Epilepsy

Despite of the abundant use of KD its specific
fundamental mechanism is not yet completely
known [115, 118, 119]. While the study on
animal models suggests that the fundamental
mechanism underlying the treatment of epilepsy
with the help of KD is so complicated as it causes
change in mitochondprial functions and involves
in neurotransmitter release. Mammalian target
of rapamycin (mTOR) may also be
effected/inhibited by KD [120-122]. In addition
to the above there are wvarious theories
supporting the fundamental mechanism of KD,
one of them are discussed below.

When there is a huge decrease occurs in the
consumption of  carbohydrates, glucose
consumption will correspondingly reduce,
resulting in increase in the activity of TCA cycle,
increase in y-aminobutyric acid production in
the brain [123], and decrease in glycolysis.
Therefore, liver starts to use fatty acids for the
production of ketone bodies such as
acetoacetate and f-hydroxybutyrate (BHB).
Therefore ketone bodies are used to provide
energy to cellular metabolism in spite of the use
of glucose [124]. Ketone bodies can easily pass
through blood brain-barrier and substitutes
glucose as a source of energy to induce a
condition of ketosis [118, 125]. In the
mammalian body a great amount of energy is
consumed to fuel neurons. It is scrutinized from
the current and past data that in KD fed
individuals the raised level of ketone bodies
obstruct neuronal excitability, which decreases
seizures activity [124, 125]. Studies show ketone
bodies affects VGLUT channels via chloride
channels on presynaptic glutamate vesicles, and
ultimately cause a decrease in glutamate
neurotransmitters, helpful in preventing seizures
[118]. Since metabolizing enzyme for ketone
bodies is found to be abundant in children and
infants than in adults. Consequently KD is more

effective in infants and children as compared to

adults [121].

4. Ketogenic diet and malignant gliomas:
Primary brain tumors arise from different glial
cells of the brain and they are categorized on the
basis of their aggressiveness at the time of, biopsy
[126]. There aggressiveness can be defined in
terms of Grades where Grade I and I are slow
growing gliomas while Grade III and IV include
swiftly  growing  gliomas.  Glioblastoma
multiforme (GBM), Grade-lV glioma, is one of
the best examples of aggressive glioma yet
studied and represents extreme challenges in the
administration of cancer patients worldwide.
GBM can grow from Grade-I and II gliomas or
it can evolve directly [127]. Even with extensive
exposure to surgery followed by chemotherapy
and radiations, individuals with lately diagnosed
GBM have low rate of life expectancy usually 12-
18 months and only <10% of them survive to 5
years [128, 129]. GBM develops in the cerebral
area of brain and results in progressive memory,
neurological deficits and personality disorders.
Other symptoms include seizures, nausea and
headache. These symptoms vary on the basis of
size of the tumor, it may remain asymptomatic
until its growth to a massive size and resulted in
brain edema. Initial biopsy is subjected to
confirm its cellular diagnosis [130, 131].
Ketogenic diet was first used in 1995 by
Nebeling et al. for the treatment of Brain
malignant tumors [132]. Two female children
were diagnosed with stage 4 and stage 3 gliomas
respectively, both of which had administered
extensive chemotherapy and radiation therapy.
The main goal of this study was to check the
effects of ketosis on decrease in the availability
of glucose interrupt tumor metabolism while
maintaining patient’s diet status. Both the
children responded well to KD and long term
tumor management [132].

In 2010, researchers published a case history on
a female affected with multicentric GBM. She
was treated with restricted ketogenic diet with
radiations and chemotherapy. After 2 months
on, diet her body weight was lessened by 20%
and more prominently no tumor was detected
even using either MRI or fluorodeoxyglucose-
positron-emission-tomography (FDG-PET).
Administration of KD diet was stopped for ten
weeks, the tumors was reappeared and
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bevacizumab  and  CPT11 (irinotecan)
chemotherapy was initiated [133]. The patient
survived for less than two years after diagnosis.
However, this case study demonstrated the
positive effects of KD in the treatment of
gliomas.

4.1 ketogenic diet and the Treatment of GBM
Calorie restricted KD is a new adjuvant therapy
being used for adults suffering with GBM. In
1924, Otto Warburg described the metabolic
cause of cancer what we call now “aerobic
glycolysis” or “Warburg effect” [134, 135].
Warburg effect describes cancer cells produces
energy primarily by non-oxidative breakdown of
glucose. RKD therapy is accomplished by
implementing  600-1200  kcal/day calorie
restricted diet with subsiding protein and
carbohydrate consumption whereas increasing
fat consumption. The main principle of this
therapy is to lowers blood circulating glucose
levels to 50-60 mg/dl in order to starve GBM
tumor cells while providing enough ketone
bodies to meet the energy requirements of the
normal cells. Seyfried along with his coworkers
have done an experiment on both humans and
animals to check the capacity of RKD to
adequately lower the blood glucose levels, to
suppress the growth of tumor cells [133, 136,
137]. Seyfried divided this therapy in three
phases. According to him Phase-1 starts just after
the diagnosis of glioma by biopsy and it involves
increase in circulation ketone bodies achieved by
normally 2-to-3 day’s therapeutic fasting (water
only). Vitamins and supplements can be
supplied to the patients to maintain required
energy levels. Phase-2 includes surgical resection
of GBM tumors while in most cases patients
have already gone through surgical resection.
Phase-3 involves long term maintenance of
tumors and consists of weeks to cycle from KD
to non ketogenic, low glycemic diet [137]. A
recent research showed that beside these effects
on GBM ketone bodies are also involved in the
protection of normal tissues from the hazardous

effects associated with chemotherapy and
radiations [138].

Classic ketogenic diet

The classic KD, original diet, was developed a
century before and at this moment it is taught to
be a most rampant type used these days [116].

Maximum classic KD’s are designed in the
specific proportion (3:1 to 4:1) that fats gives
maximum energy as compared to carbohydrates
and proteins collectively. Hence, 90% of total
calories come from the source of fat in this
dietary regimen and the remaining 10% comes
from the mutual source of carbohydrates and
proteins [115, 118]. Calories are typically limited
80% to 90% in the classic KD according to daily
based recommendations for age, and fluid
restriction is limited to 90% [139]. The classic
KD should be planned considering patient’s
health condition and must be implemented
under the administration of a dietitian and
physician [140]. This diet practice is still rare in
adults however noticeable results for its efficacy

in children’s are reported and present in
literature [141, 142].

Future Perspective

Calorie restriction and ketogenic diet are the
techniques used in the treatment of numerous
diseases while in future these dietetic mediations
will be useful in the various therapies. CR
therapy is engaged with a number of age related
disorders but there exact mechanism is not yet
elucidated and needs to be discovered in the
future [143]. They may coordinate with the
other therapies just like in the case of
glioblastoma multiforme, KD helps to recover
the hazardous effects of chemotherapy and
radiations as well as effective agent to repress the
growth of tumor cells or direct therapy may also
be administered in the case of cancer as
described above in the research studies. These
dietary mediations will also be useful in the
treatment of obesity. More KD results in the
decrease in total body weight by 20% in two
months while further studies on underlying
mechanisms, how obesity is treated with CR are
in progress. Many researchers have been
subjected this KD on epilepsy patients and its
activity is well known in epileptic patients
whereas coming years may bring more
improvement in the application of KD therapy
to epileptic seizures. The development of future-
ketogenic-diet may also reduce the side effects of
classical ketogenic diet on epileptic patients
[118]. Moreover, these mediations will also be
quite  efficient in  Alzheimer’s  disease,
Parkinson’s disease and sleep disorders. Further
studies on well integrated bio-systems involves
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should momentously facilitate the translation of
Calorie Restriction diet into stratagems for the
prevention of chronic diseases [144].

Discussion and Conclusion

Calorie restriction and ketogenic diet resembles
two characteristics: decrease in carbohydrates
and proteins intake, and compensatory increase
in ketone-bodies. According to an American
Cancer Society, cancer patients who are
receiving chemotherapy should increase their
protein and caloric intake [145]. Contrary to this
view, a reduction in calorie intake by 20%-40%
helps in the protection from toxins of
chemotherapy and suppresses the growth of
tumor cells [144, 146-149]. Based on the
ketogenic diet studies and on clinical facts
fasting for a shorter period of time should have
a positive effect on tumor cells. As I reviewed in
by collecting different studies it is obvious that
calorie restricted and ketogenic diet is quite
effective in tumor cells treatment. Beside these
anticancer special effects CR and KD is useful in
different  other  therapies as  well.
Aforementioned studies demonstrate its efficacy
in epilepsy and skin. These are the widely used
techniques, not much known vyet but it is
expected that these mediations will be a part of
every single therapy related to agerelated
disorders.
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